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ASYMPTOTIC APPROXIMATIONS OF INTEGRAL MANIFOLDS*

DAVID E. GILSINNf

Abstract Multidegree of freedom nonlinear differential equations can often be transformed by means
ofthe method ofaveraging into equivalent systems with only high-order terms. Under appropriate small-order
perturbation conditions these systems have unique surfaces of solutions called integral manifolds. They
generalize the notions of periodic and almost periodic solutions for single degree of freedom systems. In
parametric form the integral manifolds satisfy a certain system of partial differential ectuations. Conversely,
an Nth-order asymptotic integral manifold is defined as a formal solution ofthat system of partial differential
equations, up to order N in the perturbation parameter. In the main result a system of integral equations
is written for the remainder terms. By a contraction argument the system of integral equations has a fixed
point, which, added to the Nth-order asymptotic integral manifold, forms an integral manifold for the
normal system. By uniqueness this is the integral manifold sought. This implies that the unique integral
manifold can be written as a formal series plus high order error terms. As an example a second order
asymptotic representation for the periodic solution of a van der Pol oscillator is then developed.
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1. Introduction. Multidegree offreedom nonlinear differential equations can often
be transformed into systems of the form

d(e)+O(t, 0, y, z, e),

(1.1) f Ay+ Y(t, 0, y, z, e),

.= eCz+eZ(t, O, y, z, e).

The existence of integral manifolds for (1.1) is well known (see Bogoliubov and
Mitropolsky 1, p. 466] and Hale [9, p. 136], [8]). However, the usual fixed point proofs
do not convert easily to direct approximation algorithms. Diliberto and his coauthors
[4], [5] present an indirect technique to approximate invariant tori but give no
convergence argument. To the author’s knowledge no direct approximation method
has yet been shown to converge.

In this paper we define a formal integral manifold as an approximate solution to
an appropriate system of first order partial differential equations. As we illustrate in
an example in 4, this definition leads to a direct algorithm for generating the formal
approximation.

In our main theorem we show that, under certain conditions on (1.1), if a formal
approximation to an integral manifold for (1.1) exists, then it converges asymptotically.
Using Hale’s technique [8] this result extends to integral manifolds for (1.1) an
asymptotic result for center stable manifolds in Carr [2, p. 25].

2. Statement of the main theorem. For the rest of this paper we assume that (1.1)
satisfies:
(H1) tR; O, d(e)Ek" yEm; zEn" e[0, eo]
(H2) 19, Y, Z map R x Ek x Em x E" x [0, Co] to E k, E m, E, respectively.
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(H3)
(H4)

O, Y, Z are periodic in 0 with vector period to (tol, o, tok).
There exists a function M(e)>=O, M(e)+O as, e +0 such that

(2.1)

]o(t, 0, 0, o, )l <_- M(),

]Y(t,o,o,o,e)l<=M(e),
]Z(t,O,O,O,e)lM(e).

(H5)

(2.2)

There exist continuous functions r/(e, tr,/z),, a (e,
[0, eo] x [0, tro] x [0,/.to] such that n(e, tr, Ix) and a(e,
(0, 0, 0), r/(e, 0, 0)= o(e)and for (0, y, z), (0’, y’, z’) e {(0, y, x)’ 0e E, lyl-<_ ,

IO(t, O, y, z, e)-O(t, O’, y’, z’, e)l<= rl(e, tr,

IY(t, O,. y, z, e)- T(t, 0’, y’, z’, e)l_<-A(e, or,/z){10- o’l/ly- y’l/lz-
Iz(t, 0, y, z, e)- Z(t, 0’, y’, z’, e)l--- A(e, or,/x){10- 0’1+ ly-y’l+ Iz- z’l}.

(H6) A is an m x m matrix, C an n x n matrix, both with eigenvalues having
nonzero real parts.

If (1.1) does not satisfy these conditions, the method of averaging can often be
used to transform (1.1) into a similar system satisfying (H1)-(H6) (Hale [8])-. We will
illustrate this in the example in 4.

Let D, A be fixed positive numbers. We will say, thatf P,’(A, D) provided that
(1) f: R x Ekx[0, eo]--> E ", (2) f is multiply periodic in 0. with vector period to =
(to1,""", tOk), to,>0, i=1,’" ",k, and (3)f satisfies If(t, o, e)l<-O and If(t, o,e)-
f( t, o’, e )l <- Alo o’l for 0, 0’ E k.

The norm for P’(A, D) will be ]]f]] sup,,o If(t, O, e)]. Forf, ge p’(A, O),
gives the natural metric.

From (H6) we can assume A and C have the form

(2.3) A diag (A+, A_), C diag (C/, C_)

where the eigenvalues of A+, .C+ have positive real parts and the eigenvalues of A_,
C_ have negative real parts.

Define the matrices .J(t), K(t) by

J(t)=-diag (exp (-A+t), 0), K(t)=-diag (exp (-C+t), 0), t>0,
(2.4)

J(t) diag (0, exp (-A_t)), K(t) diag (0, exp (-C_t)), <0.

They satisfy

(2.5) J(-0) J(+0) =/,

(2.6) IJ(t)l
/(-0),- K(+o)=/,

IK (t)l <-/3 exp (-altl)
for constants a,/3 > O, and

(2.7) -AJ = -JA, If. -CK -KC,

Let f P,(A, D), g P’(A, D) and the unique solution of

(2.8) 0 d(e)+O(t, O,f(t, O, e), g(t, O, e), e),

with 0(to)= 0, be denoted by

(2.9) 0(t) T,gto(0), x t- to, .0(to) 0.
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This exists for all (-oo, oo)(see Cronin [3, p. 53]). The solution specified in (2.9)
satisfies the following:

(2.10) ’J; 0/,,o( +to) = r,,o(0) + o,

(2.11) g r+T..,( -,o.,o(0).T,-,o,,o(0))
The next lemma gives conditions for the existence of a unique integral manifold

for (1.1) (see Hale [8, p. 507]) and will be used to show that our formal approximation
is asymptotic to a unique integral manifold.

LEMMA 2.1. Let (1.1) satisfy (H1)-(H6) and (f, g) PT,(A, D) P’(A, D). Define
the transformation

(T,(f, g))(t, O, e)

I?o ’f’*J(z)Y[z+ t, T,.,(O),f(z+ t,

(2.12)
(T2( g))(t, #, e)

K(ez)Z[z+ t, T,(O),f(z+ t,

Let a, B > 0 be constants such that (2.6) holds. en, if there exists an Co> 0 and two

functions Do(e), Ao(e) 0 as e o 0 such that for 0 < e eo < 1,

(2.13a) rl(e, Do(e), Do(e))(1 + 2Ao(e)) <’-<’,

(2.13b) 4/3 a(e, Do(e), Do(e))(1 + 2Ao(e)) < Ao(e),

1
(2.13c) 4/3a A(e, Do(e), Do(e)) <,
(2.13d) 2--fl [M e + 2A e, Do(e), Do(e Do(e )] <= Do(e ),

the transformation T(f, g) T(f, g), T2(f, g)) has a unique fixed point (f*, g*)
PT,(A(e), D(e)) x P(A(e), D(e)), and (f*, g*) is a unique integral manifoldfor (1.1).

Let (t, 0, e)e (-oo, oo) x Ek x (0, eo]. y F(t, O, e), z G(t, O, e), y E’, z E", is
said to be an Nth order asymptotic integral manifold for (1.1) provided
(A1) F(t, O,e), G(t, 0, e) are periodic in 0, vector period to (to,,.., tOk), tO> 0,

i=l,’’’,k.
(A2) F, G have continuous partial derivatives of the first order with respect to t, 0.
(A3) There exist two functions U(e), W(e) defined for e e (0, Co] such that U(e)

and W(e) 0 as e --} 0. Furthermore, W(e) o(e), and, if D, D2 represent
the matrices of partial derivatives with respect to t, 0, then for all (t, 0)e
(-oo, o) x E

(2.14)
IF(t, o, e)l_ U(e), ID, F(t, O, e)l<-_ U(e), ID2F(t, O, e)l < U(e),

[O(t, o, e)l w(), [O,O(t, o, e)l w(e), [DO(t, o, e)l <- w(e).

(A4) There exist two functions y(e), 8(e), defined for e e(O, eo] such that
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(2.15)

T(e), 8(e)0 as e -0 and 8(e) o(e). Furthermore, if 0, 0’ E k, then

IF(t, 0, e)- F(t, 0’, e)l_-< (e)10- 0’l,
[DF(t, O, e)-DF(t, O’, e)l<-_ y(e)lO-O’], i= 1, 2,

IG(t, O, e)-G(t, 0’, o’l,
[D1G(t, O, e)-DG(t, 0’, o’l, g= 1,2.

(A5) If R(F, G), S(F, G) are defined by

(R(F, G))(t, O, e)= D1F(t, O, e)+ DEF(t, O, e)

[d(e)+(R)(t, O, F(t, O, e), G(t, O, e), e)]

-AF(t, O, e)- Y(t, O, F(t, O, e), G(t, O, e), e),
(2.16)

(S(F, G))(t, O, e)= D1G(t, O, e)+ D2G(t, O, e)

[d(e)+O(t, O, F(t, O, e), G(t, O, e), e)]

-eCG(t, O, e)-eZ(t, O,F(t, O, e), G(t, O, e), e),

then there exists a constant B > 0 such that

(2.17) [(R(F, G))(t, O, )[<=Be [(S(F, G))(t, O, e)[<=Be N+I.
We can now state the main theorem as follows"
THEOREM 2.1. Let (1.1) satisfy (H1)-(H6), and (F, G) be an Nth order asymptotic

integral manifold for the given system (1.1). Then there exist two functions Do(e),
Ao(e) - O, as e - O, and an e* > 0 such that for 0 < e <-_ e* < 1 there exists a unique
integral manifoldfor (1.1) defined by y =f(t, O, e), z g(t, O, e), periodic in 0 with vector
period to, r r( t, O, e ), s s( t, O, e ), periodic ih 0 with vector period to, and a constant
K > 0 such that r, s) P(Ao( e ), KeN X P(o(e ), KeN) and

(2.18) f(t, O, e)= F(t, O, e)+ r(t,O, e), g(t, O, e)= a(t, O, e)+ s(t, O, e).

3. Proof of the main result. Let a,/3 be given in (2.7), B in (2.17). Then pick K
as the fixed value

(3.1) K =4Bfla -1.

Let A, e, k be fixed and positive, N_-> 1. Then p,(A, Ke N) x P(A KeN) is a
complete metric space with the metric

(3.2) II(r, s), (r, s)ll lira- rll / IIsl- ll,
for rl, r2 p(A, KeN) and sl, SEe p’(A, KEN). Furthermore, let (F, G) be the Nth
order asymptotic integral manifold of (1.1), and (r, s) P,(A, KeN) X P(A, Ke N).
From the definition of (F, G) the following is always true:

(3.3) (F+r, G+s)P,(y(e)+A, U(e)+KeN)xP(,(e)+A, W(e)+KeN).
Let M(e) be given in (2.1). Then select the functions Do(e) and D(e) so that

(3.4) Do(e)= D(e) max { U(e) + Ke, W(e)+ Ke, 4fla-M(e)}.
We can assume D(e)_-<min {tro,/o} for e[0, Co], where tro,/-o come from (H5).

From (2.9)the unique solution of

(3.5) d(e)+O(t, O, F(t, O, e)+ r(t, 0, e), G(t, O, e)+ s(t, O, e), e).
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O(to) 0, is given for e (-oo, oo) by

(3.6) 0(t) "rF+r’+"-x,,o (o), x t- to, 0(to) 0,
and satisfies

(3.7) TF+"a+(O+o) +,,a+ oTx,,o (0)+o,X,
TF+r,G+s

--z,tTF+r’O+SiTt-to,,o(0))=,, --z+,-,o,,o 0

In order to simplify the notation slightly, let

(3.8) O(x) O(x + to)= O(t).

Two solutions of (5.9) can be compared. In fact, if (r,s), (r*,s*)e
PT,(A, Ke N) x PT,(A, KeN) and O*(t), O(t) are the unique solutions of

/*= d(e)+O(t, 0", F(t, 0", e)+ r*(t, 0", e), O(t, 0", e)+ s*(t, 0", e), e),

= d(e)+O(t, O, F(t, O, e)+ r(t, O, e), O(t, O, e)+ s(t, O, e), e),

with O*(to)= 0, O(to)= 0, then (see Bogoliubov and Mitropolsky [1, pp. 469-470])

Io*(t)-O(t)[

(3.9) =< 0.- 0l exp (r/(e, D(e), D(e))(1 + y(e)+ 8()+ 2a)lxl)

II(r*,s*),(r,s)ll
D(e),D(e))(l+ ( )+2zx)lxl) 1]+i+y(e)+’6’(e)+2A[exp(rl(e, y )+6(e

where x t- to.
Before constructing a mapping on P(A, KeN)xP’(A, KeN) we state some

identities. Let J, K be the matrices defined in (2.4). Then, using (3.8),

(3.10) F(t, O, e)= -dz[J(z)F(z+ t, O(z), e)] dz,

(3.11) O(t, O, e)= --dz [K(ez)O(z+ t, (z), e)] dz,

(3.12) -z [J(z)F(z + t, O(z), e)] -J(z) AF(z + t, (z), e)--z F(z + t, (z), e)

(3.13)

d
[K(ez)O(z+ t, (z), e)]

dz

=-K(ez) eCO(z+ t, O(z), e)--dz O(z+ t, O(z), e)

(3.14)
d d
-z.F(z + t, (z), e) D,F(z + t, (z), e)+ D2F(z + t, O(z), e) -z (Z),

(3.15)
d d
G(z+ t, O(z), e)= D,G(z+ t, (z), e)+ D2G(z+ t, O(z), e)--f- (z)

az
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where

(3.16)

a__q. #(z)=d(e)+O(z+ t, #(z), P(z+ t, #(z), e)
dz

+r(z+t, (z),e), O(z+t, (z),e)
+S(z+t,(z),e),e).

Identities (3.10) and (3.11) follow by breaking the integrals at 0 and using (2.5). The
others follow by differentiation.

Let T, T2 be the transformation defined by (2.12). Then, for (r,s)
Pm(A, KeN p,(A, KeN) consider the mapping

(3.17) E(r, s)= (E,(r, s), E(r, s))

where

(F,,(r, s))(t, o, e)= (T,(F+ r, G+ s))(t, O, e)-F(t, O,
(3.18)

(E2(r, s))(/, O, e)---- (T2(F+ r, O+ s))(t, O, t)-- ((t, O,

E is well defined and can be written in integral form by combining (2.12), (2.16) and
(3.0)-(3.8) to get

(E,(r, s))(t, O, t)

[oo_ J(z)W,(z + t, (z), r(z + t, $(z), e), s(z + t, (z), e), e) dz,

(3.19)
(E:(r, s))(t, O, e)

foo K(ez)XIr,-(z+ t, (z), r(z+ t, (z), e), s(z+ t, (z), e.), e) dz

where

xlt,(t, 0, r, s, e)={Y(t, 0, F+r, O+s, e)- Y(t, 0, F, G, e)}- (R(F, O))(t, 0, e)

(3.20) -{DzF(t, O, e)[O(t, O, F+ r, G+ s, e)-O(t, O, F, G, e)]},

.:(t, O, r, s, e)= e{Z(t, O, F+ r, G+ s, e)-Z(t, O, F, G, e)}- (S(F, O))(t, O, e)

-{DO(t, O, e)[O(t, O, F+ r, G+ s, e)-O(t, O, F, G, e)]}.

Equations (3.7) imply that E maps pairs of functions, periodic in 0 with vector period
w, to pairs of functions with the same periodicity property.

From (H1)-(H6) and (A1)-(A5) and the definition (3.20) it is algebraically
cumbersome but not hard to show that there exist functions L(e), L(e), Ls(e),
La(e)-0 as e 0, with L3(e), L4(e)= O(e) as e 0, such that

(3.21a) 2A(e, D(e), D(e))<-_ L(e),

(3.21b) 2cA (e, D(e), D(e))<-L3(e),

I*,(t, 0", r*, s*, e)-.,(t, t7, r, s, e)l
(3.21c)

=< (L,(e) + aL=(e))lo*- o1+ L(e)ll(r*, s*), (r, s)ll,
IxIr(t, 0", r*, s*, e) xIt(t, 0, r, s, e)l

(3.21d)
(L3(e) + aL2(e))lo*- Ol + L4(e)ll(r*, s*), (r, s)ll.
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From (3.20) and conditions.(HS) and (A2)-(A5) there exist two functions Bt(e),
B2(e)0 as e O,.B2(e)= o(e), such that

<3.22) I’t’,(t, O, r, s, )l<=(B,()+B)
where B > 0 is the constant in (AS).

Let ,/(e, tr,/) be given in (HS) and a > 0 from (2.6). By uniform continuity of
v/(e, tr,/) on [0, Co] x [0, tro] x [0,/Zo] there exists 80>0 such that

I(, , )-(e, o, o)1 -<
-8(3.23)

for (tr,/) E0, o] x [o, o].
Select the functions

(3.24) A(e)=8[3a- max {L(e), e-L(e)},

and select e* (0, 1) so that if e (0, e*), then

(3.25a) D(e) _-< o,

(3.25b) r/(e, 0, 0) <--<-8’
(3.25c) 1+ 2(y(e) + (e) + 2A(e)) -< 2,

(3.25d) 4/3a -1 max {L2(e), e-IL4(e)} <=1/2,

(3.25e) max {B(e), e-B2(e)} <- B,

(3.250 2a-{L(e)+(l+A(e))L:(e)}<--,

(3.25g) e-2/3a-{L3(e) + (1 + A(E))L4(E)}

(3.25h) A (e, y, z) <---=16/3"
From (3.23) and (3.25a)-(3.25c) we have

(3.26a) -ot+rl(e,D(e),D(e))(l+2(A(e)+y(e)+(e)))<--’,

ao(e) a(e)+ (e)+ n(e),

(3.26b) -ea+rl(e,D(e),D(e))(l+2(A(e)+3,(e)+(e))) <-’’-2"

The conditions of Lemma 2.1 are now satisfied. In fact, (3.24), (3.25a) and (3.25b)
imply (2.13a). Formulae (3.21a), (3.24) and (3.25h) imply that

(3.27) (, D(e), D(e)) 1 _8_ (, D(e), D(e)) -().

Furthermore, (3.25h) implies that

(3.28) 8/3 A(e, D(e), D(e))(7(e) + (e)) < 7(e)+ (e).

Then, (2.13b) follows from (3.27) and (3.28). Formula (2.13c) is equivalent to (3.25h).
Finally (3.25h) and (3.4) imply (2.13d).
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Lemma 2..1 states that there is a unique integral manifold for (1.1) in
PT.(Ao(e), Do(e)) x P’(Ao(e). Do(e)), where Ao(e) and Do(e) are defined in (3.24) and
(3.4), respectively. We must now show that this is the integral manifold for which
(F, G) is an asymptotic approximation.

We show that E has a fixed point. First, E1 and E2 map O(ev) functions to
O(e r) functions. From (3.1), (3.19), (3.22) and (3.25e) we have

(3.29) I(E(r,s))(t, O,e)l<-2fla-[Bl(e)+B]e<-Ke,
(3.30) I(E2(r, s))(t, O, e)l<-_2-[e-n_(e)+ n]e <-_Ke.
E and E2 satisfy the Lipschitz and contraction conditions. From (2.6), (3.9), (3.19),
(3.21c) and (3.26a) we have

I(E(r*, s*))(t, 0", e)- (E(r, s))(t, 0, e)l
(3.31) =<

+ 2/3ct-{Ll(e) + (1 + a(e))L(e)}ll(r*, s*), (r, s)ll.

Similarly, using (3.26b), we have

I(E=(r*, s*))(t, 0", e)- (E(r, s))(t, 0,
(3.32) <= 4/34-{e

+ 2/34-1{ e -1L3( e + e-( 1 + A( e ))t4( e)ll(r*, *), (r, s)ll.

Formulae (3.24), (3.25d), (3.25f), (3.25g), (3.31) and (3.32)imply that

I(E(r*, s*))(t, 0", e)-(E,(r, s))(t, 0, e)l-< A(e)10*- 0l +ll(r*, s*), (r, s)ll,
(3.33)

I(E2(r*, s*))(t, 0", e)-(E2(r, s))(t, 0, )l<-_A()lo*-ol/1/41l(r*, s*), (r, s)ll.

Then, if we set r*=r and s*=s in (3.33), we have, with (3.29), that E maps
P(A(e), KeN) x P(A(e), Ke) to itself. If we set 0* 0= 0 in (3.33) we have that
E is a contraction. In particular,

liE(r*, s*), E(r, s)ll-<-ll(r*, s*), (r, s)ll.

Therefore E has a unique fixed point (ro, So) in PT(A(e), Ker) p,(/X(e), Ke).
(ro, So) is also in P(Ao(e), Ke)xP’[,(Ao(e), Ke) since A(e)=<Ao(e)

To complete the proof we must show that (F+ ro, G+ So) is an integral manifold
in PT,(Ao( e ), Do( e P’(Ao(e), Do(e) ). Then by uniquenessf F+ ro, g G+ So and
the theorem is complete.

First of all (3.3), (3.4) and .(3..24) imply that (F+ro,
P(Ao(e), Do(e)) x P’,(Ao(e), Do(e)). Next, (F+ ro, G+ So) is an integralmanifold, if
we can show, setting

O(t) "rF+ro’+Sor O)to,

that the functions ro ro(t, O(t), e), So So(t, O(t), e) solve

d
d--- (F+ ro)=A(F+ ro)+ Y(.t, O, F+ ro, G+ so, e),

(3.34)
d
d’-’ (G+ So)= eC(G+ so)+ eZ(t, O, F+ ro, G+ So, e).
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From (3.7) and the fact that (to, So) is the unique fixed point of (3.17) using (3.19),
we can write

ro(t) fo J(z- t)*l(Z, (R)(’), to(Z), So(Z), e) dz,

(3.35)
So(t) J-o K(e(r- t))*:(r, O(r), ro(r), So(r), e) dr.

Rewrite (3.35) as follows:

ro(t) I’ J(r- t)+l(r, 0(’), ro(r), So(r), e) dr

(3.36)
So(t)= | K(e(’-t))2(, 0(’), ro(’), So(r), e) dz

+ K(e(z-t))+2(z, 0(z), ro(z), So(Z), e) dr.

Differentiate the first equation in (3.36) with respect to and use (2.5), (2.7) to get

dro J(-O)z( t, O( t), ro( t), So( t), e)

+ J(’r-t) XItl(, 0(’), ro(’), So(r), e) d"

(3.37) -J(+O)l(t, O(t), to(t), So(t), e)

J(z- t) *,(z, 0(z), to(,), so(,), e) d,

r.(t)+ e,(t, o(t), ro(t), o(t), e).

By a similar argument,

(3.38) dS=dt eCso(t)+2(t, 0(t), ro(t), So(t), e).

e result then follows by substituting the definitions of 1, 2 from (3.20) and the
definitions of R, S from (2.16) into (3.37) and (3.38) and rearranging terms.

4. Example. Consider the van der Pol oscillator

(4.1) -e(1-X2)+X=O,
which is equivalent to

(4.2) x:, : -x + e(1 -x)x:.

If we change coordinates, using x p cos 0, x2 p sin 0, p 0, (4.2) becomes

(4.3) 1 + cO(0, p), # eX(O, p)
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where

(4.4) O(0, p)=(1-p2 cos2 0) sin 0 cos 0, X(O, p) (1-p2 cos20)p sin2 0.

In order to apply Theorem 2.1 we need to transform (4.3) into (1.1) in such a way
that (H1)-(H6) are satisfied. We will do this in two steps. First we apply the method
of averaging (see e.g. Hale [10, p. 183], Gilsinn [6], [7]) and seek a transformation of
coordinates

(4.5) 0 b + eu(, r), p r+ ew($, r)

so that (4.3) is equivalent to a system of the form

(4.6) 6 1 + e2(d, r, e), f= eXo(r)+ e2R(#, r, e)

where Xo(r) is the integral average

1 o:’ r(,)(4.7) Xo(r) =" X(, r) d$ = 1-

We note that the integral average Oo(r) 0. To obtain u, w for (4.5) we solve, according
to the method of averaging,

Ou Ow
(4.8) 0- 0($, p), O--=X(,p)-Xo(p).
The fight-hand sides have zero integral average. This yields

sin2 $. 02 C0 t #($, p) - sin 44, sin 2b.(4.9) u(, p)= 2 -t-

Substitute (4.5) and (4.9) into (4.3) and solve for and :. This can be done very
generally by letting

ou Ou

(4.10) A=
"r

Ow

and noting that

(4.11) (I + eA)- I- eA+ e2A2 +

Use (4.8), (4.11) and the Taylor series for O(d+eu, r+ew), X(d+eu, r+ew) to
transform (4.3) to

(4.12)
20_.U.UXo(r)+e2(O 00 )or u +r w + 0(),

u+--w +0_3_,(
Or Or

which is in the form (4.6). Next we can put (4.12) into the form (1.1) by introducing
a translation. We observe that Xo(r)= 0 for r 0 and 2. r 0 corresponds to the zero
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solution of (4.1) and is not of interest. Introduce r 2+ s into (4.12) and get

:Ou
0-7 (4,, s + )Xo(s + 2)

(4.13)

+e2 O0
(,s+2)u(qb, s+2)+-r (qb, s+2)w(,s+2) +O(e3),

g eX(2)s + e{Xo(s + 2) X} e20w-r (qb, s+2)Xo(s+2)

+e2(O-(c,s+2)u(c,s+2)+ox )-r (qb, s+2)w(qb, s+2) + O(e3),

which is in the form (1.1) without the middle equation and satisfies (H1)-(H6).
We can now construct a second order asymptotic integral manifold for (4.13) by

seeking a function G(k, e) that satisfies the second condition of (2.17). The first
condition in (2.17) does not apply in our case. This we do by assuming the form

(4.14) s G(4, e) egl(ck)+ e2g2(tk) + O(e)

where gl(b) and g2(t) are to be determined. The constant term is zero since condition
(2.14) must be satisfied. But we must also satisfy the fact that G(b, e) must be dominated
by a function W(e) such that W(e) o(e) as e -->0. Therefore we must have gl(b) =0
and

(4.15) s e2g2(b) + O(e3).

We need only to solve for g2(b). Insert (4.15) into (4.13), equate powers of e, and get

(4.16)
dX dX

g(b) =2"-’7. (b, 2)u(ff, 2)+.--- (b, 2)w(4, 2)
or

where

OX OX
(4.17) -= 2r sin b cos b r3 sin 2b cos 2qb, =Or sin b 3r: cos: b sin: b.

Solving (4.16) amounts to approximating the solution of the second partial differential
equation in (2.16). For our case this yields

25(4.18) g2(tk) - cos 2b+ cos 4tk+ cos 6b -6 cos 8b.

Theorem 2.1 then implies that (4.13) has a unique integral manifold and

(4.19) G(ck, e)= e2(--cos2ck+cos4ck+cos6ck-cos8ck)+O(e3)

is a second order asymptotic approximation to it. Transformating back, 2 + G(b, e) is
an approximate integral manifold for (4.12). This in turn transforms through (4.5) to
an approximate integral manifold for (4.3) which corresponds to the known limit cycle
for (4.1).

As a final note this procedure extends to multidegree of freedom systems where
0, p in (4.3) are vectors. The algebra becomes more complex but the argument remains
the same.
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